Adsorption of Nile Blue A from Wastewater Using Magnetic Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Studies

author

  • Mehrnaz Ghoochian Ph.D Student in Environmental Sciences, Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Abstract:

Background: Synthetic dyes are serious pollutants and wide ranges of methods have been employed for their removal from aquatic systems. We studied the adsorption of "Nile blue A" (NBA), an anionic dye, from aqueous solution by oxidized multi-walled carbon nanotubes (MWCNTs). Methods: Scanning electron microscope and Fourier transform infrared spectroscopy were used to characterize function groups produced at MWCNTs surface. Kinetics and adsorption isotherms of NBA, the effect of temperature, pH, contact time and initial dosage of nanotubes on the adsorption capacity were also assessed. The experimental data were analyzed by Langmuir and Freundlich models. Results: Most of the dye was removed in the first 5 min and best adsorption percentage was at pH 7.0. The equilibrium reached at 45 min. The experimental data were analyzed by Langmuir and Freundlich models and the results fitted well with the Freundlich model. The adsorption kinetic data were analyzed using first-order and the pseudo-second order model and the adsorption kinetic data of NBA dye onto MWCNTs fitted the pseudo-second order model. The maximum adsorption capacity was obtained as 169.49 mg g-1. Conclusion: Freundlich model suggested that the adsorption process followed heterogeneous distribution onto MWCNTs and pseudo-second model of adsorption implied that chemical processes controlled the rate-controlling step. Oxidized MWCNTs could be used as an effective adsorbent for the removal of "Nile Blue A" dye. Oxidization of MWCNTs by nitric acid, improves the efficiency of NBA removal due to increases in functional groups and total number of adsorption sites.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Study of Adsorption Characteristics of 1-Chloro-4-Nitrobenzene onto Multi-Walled Carbon Nanotubes Surfaces from Aqueous Solution: Equilibrium and Kinetics

In this study adsorption of 1-chloro-4-nitrobenzene (CNB) from aqueous solutions onto multi-walled carbon nanotubes (MWCNTs) was surveyed. The effect of some key parameters such as pH (2-10), carbon nanotubes dosage (0.02-0.1 mg/250mL), CNB concentration (2- 16 mg/L), and temperature (20,30,40,50°C) were investigated. The results showed that, the variation of initial pH and CNB concentration ex...

full text

The Study of Adsorption Characteristics of 1-Chloro-4-Nitrobenzene onto Multi-Walled Carbon Nanotubes Surfaces from Aqueous Solution: Equilibrium and Kinetics

In this study adsorption of 1-chloro-4-nitrobenzene (CNB) from aqueous solutions onto multi-walled carbon nanotubes (MWCNTs) was surveyed. The effect of some key parameters such as pH (2-10), carbon nanotubes dosage (0.02-0.1 mg/250mL), CNB concentration (2- 16 mg/L), and temperature (20,30,40,50°C) were investigated. The results showed that, the variation of initial pH and CNB concentration ex...

full text

Adsorption of Humic Acid On Multi-Walled Carbon Nanotubes

Background: Natural organic matters (NOMs) have the main role in formation of trihalomethanes. These compounds are in natural water sources due to biological activities. In the presented study, adsorption and separation of humic acid as an index of natural organic matters using multi-walled carbon nanotubes is evaluated. Methods: The experiments were carried out in bath adsorption reactors wit...

full text

Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution.

Multi-walled carbon nanotubes (MWCNTs) were used in the adsorptive removal of aniline, an organic pollutant, from an aqueous solution. It was found that carbon nanotubes with a higher specific surface area adsorbed and removed more aniline from an aqueous solution. The adsorption was dependent on factors, such as MWCNTs dosage, contact time, aniline concentration, solution pH and temperature. T...

full text

Removal of Anionic Dyes (Direct Blue 106 and Acid Green 25) from Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes

Background and purpose:The presence of dyes in wastewaters may cause serious problems for the environment because of their high toxicity to aquatic organisms and unfavorable aesthetical impact. In the present study, multi-walled carbon nanotubes (MWCNTs) were used for removal of anionic dyes Direct Blue 106 (DB106) and Acid Green 25 (AG25), from water samples. Materials and Methods:MWCNTs were ...

full text

Optimization of Xe adsorption kinetics in single walled carbon nanotubes

Closed end ~10, 10! single walled carbon nanotubes ~SWNTs! have been opened by oxidation at their ends and at wall defect sites, using ozone. Oxidation with ozone, followed by heating to 973 K to liberate CO and CO2, causes etching of the nanotube surface at carbon atom vacancy defect sites. The rate of adsorption of Xe has been carefully measured as a function of the degree of nanotube etching...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue None

pages  7- 12

publication date 2016-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023